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Abstract

Over the past two decades, several microarchitectural
side channels have been exploited to create sophisticated
security attacks. Solutions to this problem have mainly fo-
cused on fixing the source of leaks either by limiting the flow
of information through the side channel by modifying hard-
ware, or by refactoring vulnerable software to protect sensi-
tive data from leaking. These solutions are reactive and not
preventative: while the modifications may protect against a
single attack, they do nothing to prevent future side channel
attacks that exploit other microarchitectural side channels
or exploit the same side channel in a novel way.

In this paper we present a general mitigation strategy
that focuses on the infrastructure used to measure side
channel leaks rather than the source of leaks, and thus
applies to all known and unknown microarchitectural side
channel leaks. Our approach is to limit the fidelity of fine
grain timekeeping and performance counters, making it dif-
ficult for an attacker to distinguish between different mi-
croarchitectural events, thus thwarting attacks. We demon-
strate the strength of our proposed security modifications,
and validate that our changes do not break existing soft-
ware. Our proposed changes require minor – or in some
cases, no – hardware modifications and do not result in
any substantial performance degradation, yet offer the most
comprehensive protection against microarchitectural side
channels to date.

1 Introduction
Any computation has an impact on the environment in

which it runs. This impact can be measured through physi-
cal effects such as heat or power signatures, or through how
the computation consumes system resources such as mem-
ory, cache, network or disk footprints. In a side channel
attack, an attacker collects these unintentional leakages to
compromise the confidentiality of the computation.

A particular class of side channel attacks that rely on

microarchitectural leaks has gained notoriety in the last
decade. In these attacks, shared on-chip resources like
caches or branch predictors have been used to compromise
software implementations of cryptographic algorithms [4,
8, 9, 12, 13, 14, 15]. A particularly dangerous attack
demonstrated in 2009 revealed that an attacker could record
keystrokes typed in a console from another co-resident vir-
tual machine in a cloud setting by measuring cache utiliza-
tion [17]. But microarchitectural side channel dangers are
not limited to cryptographic software or cloud installations:
as system-on-chip designs become popular, the tight inte-
gration of components may make physical side channels
more difficult to exploit. Attackers will likely turn to mi-
croarchitectural leaks to learn sensitive information.

In this paper, we present a general mitigation strategy
to protect against microarchitectural side channels. Instead
of fixing the source of leaks, which requires identification
and modification of all on-chip leaky structures, we propose
simple changes to the on-chip measurement infrastructure
making it difficult to accurately measure leakage.

We explain our solution in the context of a popular mi-
croarchitectural side channel attack called the prime-probe
attack (Figure 1). Consider two processes, a victim and a
spy. The spy process first “primes” all cache sets with its
data (represented by red boxes). The victim executes and
knocks off some cache lines (green boxes). Following the
execution of the victim (or in parallel), in the “probe” phase,
the spy process queries each cache line to see if its data
items have been knocked out of the cache. If the spy is suc-
cessful at detecting a cache miss, it knows that the victim
must have used that cache line. Then, using additional in-
formation about the software algorithms used by the victim
or how the OS manages the address space, the spy can de-
duce the exact datum used by the victim. In this attack and
in other microarchitectural attacks, a key step is to deter-
mine if a certain microarchitectural event (such as a hit/miss
on the primed line, in this case) happened. The spy can de-
termine this information directly using microarchitectural
performance event counters or indirectly by measuring the
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Figure 1: A typical microarchitectural side channel attack. A key step is measuring timing (step 3). Our solution is to fuzz timing.

time for the load to return; longer return times indicates a
miss in the cache line.

While it is easy to come up with ad hoc fixes for this
particular case using software, e.g. flushing cache before
process swaps, or hardware changes, e.g. randomizing data
placement in the caches, these solutions are reactive to
known attacks: they may not generalize to other side chan-
nels (which may be unpublished), or even attacks that use
the same side channel in a different way. Our solution, in
contrast, mitigates all microarchitectural side channel at-
tacks by controlling access to timing and microarchitectural
event counters. Without any way to meaningfully measure
differences between microarchitectural events, the attacker
cannot extract the signal from the noisy data, and microar-
chitects can design without worry of side channel leaks.
Continuing with the example, our solution will provide ar-
bitrary time values to the spy process on each measurement
making it difficult to differentiate between hits and misses.

However, it turns out that controlling timing and mi-
croarchitectural event counters is nuanced. While most pro-
grams are oblivious to on-chip performance counters (from
a functional perspective), we find that many system and
application programs routinely use timing information for
their correct, functional operation. For instance, without a
timing source, Linux will not boot, multimedia games will
not work correctly, and some cryptographic libraries that
use microarchitectural entropy lose strength.

To control timekeeping without breaking the software,
we first identify all possible sources of timing information,
and then individually discuss how and to what degree each
timing source can be fuzzed. We observe that there are only
three ways to receive timing information: internal, hard-
ware time sources, such as the time stamp counter on x86;
external time sources, such as external interrupts or network
packets that deliver time from another computer or device;
and through software only clocks that use knowledge of mi-
croarchitecture events (e.g., using 1 cycle ADDs in tight
loop) to create a virtual clock. This taxonomy is complete
because it covers every meaningful combination of internal
and external sources, and hardware and software for deduc-

ing time. We outline how we handle each of these sources:

• To obscure internal sources, we propose changing the
granularity of the internal clock counter. If the minimum
resolution of the clock is greater than the longest microar-
chitectural event on a chip, then it cannot be used to distin-
guish microarchitectural events. We describe and demon-
strate that our algorithm for providing this functionality pro-
vides strong security guarantees. It is also trivially imple-
mentable in hardware.

• We argue that external events cannot be delivered fast
enough to distinguish between microarchitectural events.
This is because external events have to cross the chip bound-
ary to get into the chip, and the longest microarchitectural
events are also those that cross the boundary.

• We show that software clocks use a very distinct form of
inter-thread communication that intentionally races. These
races are easily detected using previously proposed race
detectors, or our lightweight hardware detection unit that
uses existing on-chip infrastructure with minor modifica-
tions. Once detected these events can be obscured.

Finally, we recognize that some performance monitoring
circumstances will warrant exact timing information and
show how obfuscation scheme can be configured to provide
such support. This only requires adding one new instruction
to the ISA that operates in privileged mode.

We validate our changes by implementing our solution in
a virtual machine environment and confirmed that our ob-
scuration schemes does not break software. We show that
average performance impact of obscuring clocks is less than
4% (a loose upper bound), and only requires few bits of stor-
age. The combination of these features provide an efficient
method for preventing microarchitectural timing attacks.

The rest of the paper is organized as follows: we de-
scribe related work in Sec. 2 and the threat model in Sec. 3.
We discuss backwards compatibility requirements in Sec. 4.
Following that we present our solutions to thwart hardware
and software clocks in Sec. 5 and Sec. 6 respectively, and
microarchitectural and architectural design in Sec. 7. We
provide a security analysis in Sec. 8 and experimental re-
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sults in Sec. 9. Finally, we discuss how our method for
obscuring timing information could be extended to on-chip
performance counters in Sec. 10 and conclude in Sec. 11.

2 Related Work
Instruction caches, data caches and branch predictors

have all been shown to leak enough information to execute
successful attacks on cryptographic systems. These struc-
tures have no knowledge of context switches, so when a
new process gains control of the CPU it will also inherit the
state of the previous process’s caches. Although an unpriv-
ileged process cannot directly query the state of the caches,
it can use clever timing tricks to infer their state, and from
that learn sensitive information about the previous process.

Though many microarchitectural side channel attacks
[2, 3, 8, 4, 9, 12, 13, 15] differ in their exact implemen-
tation and efficacy, most rely on fine grain timing informa-
tion. The RDTSC instruction, named from an abbreviation
of ReaD TimeStamp Counter, is an x86 instruction that re-
turns the current value of the timestamp counter (TSC) reg-
ister 1. Since the TSC register is incremented every cycle,
measurements taken using RDTSC can be accurate to the
nanosecond scale. Percival’s attack [15] relied on distin-
guishing between 120-cycle and 170-cycle events. Bern-
stein’s attack [4] relied on distinguishing between timings
45 to 130 cycles apart. The attack of Osvik et al. [13] relied
on distinguishing between 65-cycle and 120-cycle events.
The branch prediction attack of Acıiçmez et al. [3], in the
best case, relied on distinguishing 5250-cycle events from
5500-cycle events.

Numerous countermeasures to microarchitectural side
channel attacks have been previously suggested and imple-
mented, though most focus on modifying the implementa-
tions of specific cryptographic algorithms rather than fix-
ing the underlying hardware [8, 4, 9, 12, 13, 14, 15]. The
downside of this effort is that the countermeasures are not
just application specific, but also platform and side chan-
nel specific. After a program is modified to prevent one
attack, it may be vulnerable to alternative side channels or
other sections of code may still be vulnerable. Additionally,
relying on programmers to detect and fix side channel vul-
nerabilities in their code is impossible — not just because
programmers are inherently fallible, but also because code
may predate the hardware on which it runs.

Previous work has also considered countermeasures that
involve hardware modifications to defeat microarchitectural
attacks more generally. These fall into two categories: mod-
ification to leaky hardware structure, or the disabling of
measurement infrastructure.

1These fine grain timing instructions are not unique to x86: most ar-
chitectures have an equivalent register to the TSC on x86 such as the TB
register on PowerPC and the TICK register on SPARC. Throughout this
paper we will use the x86 terminology TSC and RDTSC for simplicity.

Fixing Leaky Hardware: Bernstein [4] proposed a new
CPU instruction that would allow a process to load specific
data into the L1 cache in a constant number of cycles irre-
spective of hits or misses. Multiple sources [4, 12, 13, 14,
15] considered a fully partitioned cache in SMT or clear-
ing the cache on every context switch, though all admit that
the resulting performance degradations would be unaccept-
ably high. Page [14] suggested intentionally randomizing
the order of non-dependent loads and stores to confuse spy
processes, or inserting random delays into the overall exe-
cution time of a cryptographic process, both of which could
be done through hardware modifications, though he noted
that such a solution increases overall execution time and
can be defeated by averaging the results of execution over
many runs to average out the perturbations. Percival [15]
suggested modifying the eviction policy of SMT to prevent
a process from exerting undue control over the L1 cache
of its sibling process, though does not go on to describe
what might constitute a safe eviction policy short of dis-
abling cache sharing entirely. Wang and Lee [20, 19] pro-
posed two new data cache designs, PLcache and RPcache,
and showed how both were effective at preventing specific
microarchitectural side channel attacks based on data cache
sharing. Their techniques also improved performance but it
is unclear how those ideas can be extended to other shared
structures.

Disabling Timing Infrastructure Percival also consid-
ered limiting or removing access to the RDTSC instruction,
but dismissed the idea because he contended that attack-
ers on multi-processor systems could effectively instanti-
ate a virtual timestamp counter, i.e., a software clock (see
Section 6). Bangerter et al. [8] suggested completely dis-
abling fine grain timers like RDTSC. They reported that
disabling RDTSC would make cache misses impossible to
detect without arousing suspicion, though they noted that
much existing software requires RDTSC access and thus
considered disabling RDTSC to be largely impractical. We
provide a method of obscuring RDTSC that allows most
software to operate smoothly in Section 5.

3 Threat Model
In this paper, we specifically attempt to mitigate

software-based, microarchitectural side-channel attacks.
A microarchitectural attack is one where the attacker ex-

ploits the characteristics of the microarchitectural imple-
mentation to reveal the victim’s secret information. As the
attacker shares the processor with the victim, she can make
observations on her own microarchitectural state and use
those to make inferences about the victim. Alternatively,
or simultaneously, she can indirectly modify the microar-
chitectural state of the victim to slightly affect the victim’s
execution rate. In all cases, we define microarchitectural at-
tacks to be those that are carried out by exploiting timing
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differences on the nano- or micro-second timescale.
A software-based attack is one that is executed entirely

in software. This means that the attacker can only learn
information from machine instructions she executes on the
system used for the attack. This excludes, for instance, any
power monitoring attacks, where the attacker monitors the
power consumption of the system using external probes. It
also excludes passive signal monitoring attacks, where the
attacker listens to signal leaking from the system such as
electromagnetic radiation from the monitor or the sound of
typing on the keyboard.

For an attacker to carry out a microarchitectural attack,
the attacker needs only user-level access to this system but
should be able execute arbitrary user-level code. The at-
tacker also has some means of inducing the victim to run
the sensitive code, or else the victim runs the sensitive code
often enough that the attacker can simply wait and listen.
Finally for a microarchitectural attack both the victim and
the attacker share the same processor or a set of processors.

Though we define microarchitectural side-channel at-
tacks to be those that happen on the nano- or micro-second
timescale, it is conceivable that in a software attack a set of
microarchitectural events could be aggregated to produce a
sufficiently large change in program execution time that can
be detected with coarse timing information. For instance, an
attacker can repeatedly measure few thousands of sensitive
unknown latency loads using coarse grained timers to draw
probabilistic conclusions about the fraction of loads that hit
or miss in the cache. We do not know of such attacks, and it
is unclear how effective these attacks can be. Further, such
a side-channel leakage blurs the line between “microarchi-
tectural” and “throughput” related side channels, and pro-
grams vulnerable to these aggregation attacks fall outside
the scope of this paper.

4 Timekeeping Requirements
As this paper recommends changes to the behavior of

hardware timekeeping instructions, we must take great care
not to disrupt the programs that already use these instruc-
tions. In this section we outline some properties of time-
keeping infrastructure that any modifications must respect.

Strictly Increasing The RDTSC instruction returns the
number of cycles since processor start-up, and is expected
to always increase. Any modification to RDTSC behavior
must still maintain that RDTSC is a strictly increasing func-
tion. Violating this constraint can cause serious problems.
For instance, when multicores were first introduced, each
core had its own independent TSC register that ran freely
on its own without any synchronization. But, when a pro-
cess would context switch from one core to another while
it was making multiple RDTSC calls, it would occasionally
see the TSC register as having decreased [1]. To correct
this, operating systems now make efforts to synchronize the

TSC registers on every core when they first start and the
TSC register increments even when the core is asleep.

Entropy The RDTSC instruction is sometimes used to
gather entropy by observing the final few bits of the returned
value. The entropy gathered can be used for cryptographic
purposes or other algorithms that require random bits2. The
least significant bits of RDTSC represent randomness from
OS scheduling, pipeline state, and cache state of the proces-
sor. To maintain this functionality, modifications to RDTSC
must still enforce that the less significant bits of the return
value become unpredictable over time.

Relative Accuracy RDTSC can be used to gather fine-
grained performance statistics. Multimedia applications
and games use RDTSC to effect a short term delay by spin-
ning until RDTSC reaches a certain value in the near future.
For the RDTSC results to make sense in these cases, suc-
cessive calls to RDTSC must have a difference that accu-
rately reflects the number of cycles between the two calls.
We call this the relative accuracy of RDTSC, meaning that
a return value is accurate relative to a previous call. Any
modification to RDTSC must maintain a degree of relative
accuracy. We note that relative accuracy is not a correct-
ness constraint. Software should be resilient to a variety
of return values returned by RDTSC, because even without
our changes, the RDTSC instruction itself can take a vari-
able number of cycles to execute due to the state of caches,
DVFS, scheduling, etc.

Absolute Accuracy The timestamp counter value tells
the program for how many cycles the processor has been
running, and it is possible that some programs use RDTSC
to acquire that information. Though we cannot find explicit
examples of this, it is conceivable some program may rely
on this property. For instance, a program might use RDTSC
to send an email to the system administrator after a com-
puter has been running for more than 10 days. Any time-
keeping modifications should enable systems to acquire ac-
curate information when necessary.

5 Securing Hardware Timekeeping
Our goal is to adjust the timekeeping infrastructure suffi-

ciently to thwart side channel measurements but at the same
time not break existing software. Towards this we propose
that the RDTSC instruction be obfuscated by small random-
ized offsets.

The extent of the obfuscation will be controlled by the
current obfuscation level, denoted as e, which is set by the
OS. When e is set to zero, or when in privileged mode,
RDTSC instructions will execute with full speed and ac-
curacy. This allows any timing-related OS components like
the scheduler to operate as normal, and allows the OS to

2OpenSSL 1.0.0, crypto/rand/rand nw.c, ll 157-165
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disable the obfuscation on a per-process basis for any pro-
grams that are trusted and require high fidelity timing to
work properly.

We propose obfuscating RDTSC in two ways: by insert-
ing a real-time delay that stalls RDTSC execution, called
the real offset; and by modifying the return value of the in-
struction by a small amount, called the apparent offset.

To calculate these offsets, we conceptually divide time
into epochs. Epochs vary in length randomly from 2e−1 to
2e−1 cycles. Within any given epoch, we denote the current
epoch length as E.

The real offset delays execution of each RDTSC until a
random time in the subsequent epoch, and requires that the
TSC register always be read on an epoch boundary (Fig-
ure 2). When a RDTSC instruction is encountered during
execution, its execution will be stalled until the end of the
current epoch. On the epoch boundary, the TSC register
will be read. The instruction will then continue to stall for
a random number of cycles in the range [0, E) of the subse-
quent epoch. The sum of these two stalls is the real offset,
denoted DR.

In addition to a real offset, we use an apparent offset to
fuzz the cycle count returned by RDTSC. After the TSC
register has been read at the epoch boundary, a random
value in the range [0, E) will be added. This apparent off-
set is generated independently of the real offset, making
RDTSC instructions appear to have executed at a time com-
pletely uncorrelated to the time where execution actually
resumed.

As a result of these modifications, malicious processes in
user-space will no longer be able to make fine grain timing
measurements to a granularity smaller than 2e−1, making
microarchitectural events undetectable as long as 2e−1 is
more than the largest difference between on-chip microar-
chitectural latencies.

Our proposal also maintains all desiderata previously
outlined for RDTSC. The obscured RDTSC will be strictly
increasing, and relative accuracy will be at most inaccurate
by 2e+1 cycles. Further, while each RDTSC instruction will
be slowed down considerably because of the real delays,
the throughput of the system will be largely unaffected ex-
cept for unusual programs that load the RDTSC frequently.
The overwhelming majority of existing programs do not call
RDTSC enough to exhibit any slowdown.

5.1 Previously proposed modifications and their flaws

Previous work proposed alternative modifications to
RDTSC. We now outline why previous proposals are in-
sufficient.

Disallow any user-space RDTSC instructions Percival
[15] and more recently Bangerter et al. [8] both consid-
ered disabling RDTSC entirely as a simple and effective
way to obscure timing information. As they conclude, how-
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Figure 2: LHS shows normal execution of RDTSC instruc-
tions timing code section marked C. We propose adding two
delays to RDTSC instructions (RHS). The first delay stalls
execution of RDTSC instruction in real-time until the next
and the second delays into the next epoch by some random
amount. Additionally, the return value of RDTSC is mod-
ified to be some random time within the new epoch. This
second stop adds randomness to measurement C, defeating
statistical reconstruction.

ever, this change is too disruptive for most systems to tol-
erate. We solve this by allowing access to the coarse val-
ues of RDTSC. Note that our approach is no more dan-
gerous than disabling RDTSC entirely, as an attacker could
find other sources for coarse timing information (see VTSC,
Section 6).

Mask the least significant bits of RDTSC Osvik et al.
[13] suggested an obscured RDTSC that masked the least
significant bits of RDTSC, creating a step function. They
regard such a solution impractical because statistical anal-
ysis would defeat it. Vattikonda et al. [18] also noted
that such an implementation is not sufficient to prevent fine
grain timing by a sufficiently motivated attacker. By call-
ing RDTSC until the epoch bits changed, an attacker would
know he was at the beginning of an epoch. He could then
execute the code he wished to time, and then continuously
call RDTSC and increment a register in a tight loop until the
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end of the epoch. We solve this problem by both inserting
a real offset rather than merely masking the returned result
and using variably-sized epochs.

Random offset to RDTSC Jayasinghe et al. [9] sug-
gested adding random offsets to the return value of RDTSC.
In isolation, such solutions are impractical. Without any
protection mechanism, random offsets may allow for time
to appear to go backward: for instance, if RDTSC is called
twice in rapid succession, and the random offset for the first
call is much larger than the second, the second call will ap-
pear to finish earlier. No simple solution to this problem
exists.

One possibility is to keep track of the most recently
returned value and to disallow a small random offset to
be generated immediately after a large one. This repairs
RDTSC so that it will only move forward, but allows an at-
tacker to defeat the randomness. By calling RDTSC many
times in a row, the attacker will significantly narrow the
available range of the offset so that, in the extreme case,
it will only be able to return the maximum offset.

If instead the offset is unbounded, repeated calls to
RDTSC will result in time appearing to move forward much
faster than it actually is. Eventually the offset will be large
enough to affect the system. For instance, a legitimate pro-
gram may call RDTSC and incorrectly calculate the time of
day as being hours ahead of its true value.

We therefore conclude that the only way to solve this
problem is to prevent a process from calling RDTSC too
frequently using a physical delay, as we do in our solution
with our real offset.

6 Securing Software Timekeeping
Even with the RDTSC instruction obscured, an attacker

on a multicore system can execute a virtual clock to obtain
timing information. Previously, Percival [15] recognized
this was possible and referred to it as a virtual Time Stamp
Counter. In this paper, we abbreviate it as VTSC.

VTSC Formulations Percival imagined a situation where
a process has two threads, A and B, each running on sep-
arate cores and sharing a memory address X . Thread A
initializes a local register to zero, and then runs an infinite
loop of incrementing the local register and storing it to X .
Assuming no other thread is attempting to read X , this im-
plementation would increment X at a rate of about once
per cycle. To use this information, thread B would read
X immediately before and directly after the instructions it
wishes to time and calculate the difference, mimicking the
RDTSC instruction. Thus, Percival’s implementation cre-
ates write/read shared memory communication, and we re-
fer to his suggestion as a W→R VTSC.

But this is not the only way VTSC can be implemented.
We present an alternative VTSC implementation that can be

implemented with write/write shared memory communica-
tion, which we refer to as a W→W VTSC. In this imple-
mentation, an attacker would use two timer threads T1 and
T2 and one probe thread P , as well as two shared memory
addresses X and Y . T1 will run in a tight loop of loading
X , incrementing it, and storing it back to X . T2 will do the
same for Y . To make a timing measurement, P will set X
to 0, perform the timed set of instructions, and then set Y to
0. Afterward, T1 and T2 can be terminated and Y −X will
reveal the time.

6.1 Countermeasures

Our countermeasure to prevent VTSC timekeeping re-
quires two parts: a detector (a method for detecting VTSC
shared memory communications) and a delay producer. The
detector must catch all instances W→R or W→W com-
munications, ideally with as few false positives as possi-
ble. The delay producer must, when activated, insert delays
that obscure any timing information a VTSC could obtain
through such communication.

Several hardware race detectors have been proposed [7,
10, 11, 16] that can detect all VTSC communications with
varying degrees of false positives. Of these, the most re-
cent uses existing (Nehalem) performance counters to de-
tect W→R communication [7]. While the performance
counter trick thwarts W→R VTSC, current Nehalem per-
formance counters do not allow us to detect W→W com-
munication. If these counters are added in future microar-
chitectures, the same technique could be used to protect
against our W→W implementation.

While the performance counter based implementation is
fairly simple, one drawback is that most of the events that
are caught will be false positives, as many of them can come
from shared memory communication that happens far apart
in time. However, by construction we know that VTSC
needs to quickly share data with another thread, and we care
only about very close races that happened within a few tens
to hundred cycles. So traditional hardware race detectors
or even performance counters that track these dependencies
across cache evicts for thousands of cycles are an overkill
for this problem. Instead we propose a lightweight method
of tracking rapid inter-thread communication to eliminate
false positives. Our solution is to keep track of lifetimes
of cache accesses and trigger VTSC obfuscation only for
recent updates. In the next section we describe this imple-
mentation in detail.

7 Implementation
In this section we first describe microarchitectural mod-

ifications to implement RDTSC fuzzing and then describe
modifications for protecting against VTSC attacks.

RDTSC We propose two methods of implementing the
modifications to the RDTSC instruction. The first is to mod-
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ify the decode stage to translate all RDTSC instructions into
four instructions when operating in obfuscation mode.

1. Stall Dr1
(until end of epoch)

2. Store TSC→ R1

3. Stall Dr2
∈[0, E)

4. Add DA → R1

where DR = Dr1 + Dr2 is the real offset and DA is
the apparent offset. Both these delays should be accessible
in the decode stage from a true or pseudo random number
generator.

The second method is to modify the execution of the
RDTSC instruction. The TSC module will, when queried,
return a value already fuzzed by the amount DA. Addi-
tionally, the execution stage will not commit the RDTSC
instruction for DR cycles, causing a stall in the instruction
pipeline.

VTSC Some hardware modifications may also be neces-
sary to effectively catch all VTSC race events with a min-
imum number of false positives. We suggest adding two
additional bits called TLU (Time of Last Use) to each pri-
vate L1 cache line that represent how recently the core in-
teracted with the line (see Figure 3). These bits will be
initialized to 00 when a new cache line is installed in the
cache, and set to 11 when a cache line is used by a thread.
Periodically, any non-zero TLU will be decremented by 1.
When another core or thread requires read or write access
to a cache line and its TLU bits are non-zero, a VTSC vi-
olation is reported. This detection method will catch both
W→R and W→W events, while filtering out false posi-
tives for old reads/writes that might otherwise cause addi-
tional slowdown. The VTSC violation is reported to the OS
as an interrupt when inter thread communication occurs.

We show in the results section that this filtering mecha-
nism can potentially filter out 96% of the false positives for
decay period of 215 cycles, when compared to a scheme that
catches all inter-thread cache sharing. Our implementation
is also minimal in terms of area requirements. This is be-
cause the filtering scheme cannot be implemented with one
bit vectors. To see why consider a one bit implementation.
With one bit, if VTSC communication events happen just
before and just after flash clearing a single bit they will not
be caught. This problem is avoided with two bits that slowly
decay with time because we guarantee that there is a mini-
mum separation between between a read and a write, which
is basically the time period for the decay operation. On an
architecture with 64 sets of 4-way associative cache lines,
this modification results in 512 additional bits per core. If
the cache lines are 64 bytes each, this amounts to a 0.4%
overhead. The conditional logic associated with checking
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recently 
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00
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every 2   cycles15
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interrupt requesting core

Intra-thread
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Inter-thread
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Figure 3: The TLU bits for each line maintain a state machine
which indicate whether or not a line has been recently accessed.
This information is used to cause interrupts during coherence evic-
tions, thus disrupting tight W→R and W→W communications.

for non-zero TLU can be implemented in parallel with the
cache line fetching without significantly impacting clock
frequency or latency.

The delay producer must cause a delay that obscures the
timing information associated with the race condition. Ex-
perimentally, we found that allowing the operating system
to handle an empty interrupt was enough to obscure the tim-
ing information. Our results are presented in Section 9.

We note that our proposed VTSC modifications may
cause noticeable slowdowns in programs that have tight
inter-thread locking mechanisms. Fortunately, such locking
mechanisms are usually found in system programs, where
our modifications do not apply. This is because attack-
ers with privileged access do not need side channels to
steal information. For locks in highly contended user mode
programs, performance pathologies may result, but overall
many locks in production applications appear to be acquired
without contention [6].

7.1 ISA Modifications

We recommend a new instruction to control the amount
of obfuscation that we call TSCWF, short for “TimeStamp
Counter Warp Factor”. TSCWF will take one parameter,
which will be an integer between 0 and 15 (0 disables ob-
fuscation). This parameter, previously referred to as e, sets
the epoch length to be in [2e−1, 2e − 1]. For instance,
TSCWF 10 will set the epoch size to be between 512 and
1023 cycles. When the CPU resets, the TSCWF value will
be initialized to 0 so that operating systems unaware of the
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TSCWF instruction will still function properly. Addition-
ally the CPU needs to identify to the software if it supports
the TSCWF instruction. To prevent processes from sim-
ply granting themselves full RDTSC access, the TSCWF
instruction must be a protected instruction. The TSCWF in-
struction will only affect calls to RDTSC when the CPU is
in user-mode. It will not affect the accuracy of kernel-mode
calls to RDTSC.

7.2 Deployment on Existing Hardware

Our modifications for obscuring RDTSC could be de-
ployed on existing hardware using virtualization. The CPU
would trap upon encountering a RDTSC instruction in user-
mode. The virtualization software would return a RDTSC
value with the appropriate apparent offset, and also spin for
enough cycles to effect the necessary real offset.

However, such a deployment would only be secure on
a single-threaded virtual machine. Attackers on a multi-
threaded virtual machine could use software clocks for tim-
ing information, and existing hardware does not provide
enough infrastructure to prevent all such communication.

7.3 Software Management

Despite our precautions, some programs may exist that
cease to function when RDTSC is obscured. Moreover,
while other programs may continue to function, they may
suffer noticeably from the inaccuracy of RDTSC (e.g., per-
formance measurements).

To solve this problem, the operating system can pro-
vide functionality to track which threads have been granted
RDTSC permissions from the system administrator and
raise or lower the core’s RDTSC permissions immediately
before and after context switches. In Linux, for example,
a bit could be added to the task structure that indicates
whether or not that process should be obscured. For all pro-
grams that are obscured, the scheduler can decide on an ap-
propriate value for e. A value of 0 indicates that RDTSCs
will function normally. As the kernel is trusted, we never
obscure a call to RDTSC in kernel mode.

8 Security Analysis
In this section we demonstrate why our proposed

changes are sufficient to prevent an attacker from learning
about the presence microarchitectural events. We also show
the resistance of our changes to statistical analysis.

8.1 Completeness of Approach

All programs can be classified into two categories: non-
deterministic or deterministic programs. The attacker’s pro-
gram cannot be deterministic because it would produce
the same output irrespective of the microarchitectural state,
which is directly counter to the attacker’s objective in a mi-
croarchitectural side channel attack. Therefore, a microar-
chitectural attack requires non-determinism to succeed.

The attacker’s program does not have root access, and
therefore must exist within the operating system abstraction
of a process or set of processes. In this abstraction, a pro-
cess can only undergo non-deterministic behavior in three
ways: non-deterministic hardware instructions; accessing
shared memory; and system calls. We discuss the feasibil-
ity of extracting microarchitectural state from each of these
sources.

Hardware Instructions Most instructions executed by
the CPU are deterministic, such as adds, multiplies, jumps,
etc. Trivially, any serial execution of deterministic instruc-
tions is itself deterministic. However, instructions that read
hardware processor state are non-deterministic, as their in-
put values do not determine their outputs. We must explic-
itly examine each non-deterministic instruction on an archi-
tecture to verify that it cannot depend on or leak microar-
chitectural information.

If the output of an instruction does not change with re-
peated execution, the instruction cannot be used in a mi-
croarchitectural attack. An example of this is the CPUID
instruction on x86.

Performance counters are non-deterministic and are a vi-
able way to learn about microarchitectural events – in fact,
some performance counters are designed to reveal the oc-
currance of such events. However, most ISAs only allow
privileged programs to query performance counters, and
therefore currently do not pose a threat. The time stamp
counter, however, is an exception: it is available to all pro-
grams. We therefore consider fine grain timing instructions
like RDTSC to be one of the feasible ways that a process
can create the non-determinism necessary to detect a mi-
croarchitectural event.

Shared Memory For the program to detect a microarchi-
tectural event using shared memory, there must be a load or
store whose outcome depends on that event. As loads and
stores are themselves deterministic in the value that they
read or write, it is only by the interleaving of these instruc-
tions that we can sense the event.

Without loss of generality, let us consider two threads of
execution that share memory and conspire to detect a mi-
croarchitectural event. The interleaved instructions must be
a load and a store, or a store and a store – two loads cannot
discover their own interleaving. Furthermore the interleav-
ing of the two instructions must depend upon a microar-
chitectural event, meaning that they must happen at very
nearly the same time. From these observations, we can con-
clude that rapid inter-thread communication through shared
memory using either load/store or store/store interleavings
is the only viable way for a microarchitectural event to be
detected.

System Calls System calls introduce non-determinism
into a process, as their return values cannot always be deter-
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mined by their inputs. Barring a scenario where the operat-
ing system exposes performance counters via system calls,
a process would need to gain timing information through the
system call sufficiently accurate to detect microarchitectural
events.

In practice, the overhead of a system call is far too great
to allow such timing information to propagate to the pro-
cess. Even with newer instructions that allow low-overhead
system call entry and exit, a system call usually takes hun-
dreds or thousands of cycles purely in overhead. With such
an unpredictable and lengthy timing overhead, system calls
cannot provide useful timing information. Even if we con-
sider that the system call returns with data from a highly ac-
curate clock (such as a network read from another computer
using RDTSC), the accuracy of the timing information will
be degraded too greatly to be useful. Thus, we do not take
any further steps to obscure timing from system calls.

Improving system call speed is an ongoing field of re-
search. If system calls eventually become fast enough to
detect microarchitectural events, additional steps may be
needed to obscure this timing information source.

In sum, these arguments show that depriving a process of
fine grain ISA timers like RDTSC and disrupting the tim-
ing of inter-thread communication is sufficient to deter mi-
croarchitectural side channel attacks. Since we have shown
methods of protecting against RDTSC misuse in Section 5
and concurrency races in Section 6, our solution is com-
plete.

8.2 Resilience Against Statistical Analysis

Previous work [15, 13] expressed concern that any
RDTSC fuzzing could be easily defeated by statistical anal-
ysis. We demonstrate that defeating our proposal using sta-
tistical analysis would be exceedingly difficult for fine grain
timing measurements.

Consider the most general case of using RDTSC to de-
tect the presence or absence of a microarchitectural event
for some contiguous sequence of instructions. To make tim-
ing measurements on this sequence, an attacker will have to
execute RDTSC once before the section and once afterward.
We will denote these two calls RDTSC1 and RDTSC2,
which will yield the return values R1 and R2. The attacker’s
aim is to distinguish between two possibilities, one of which
is slower and one which is faster. We denote the faster pos-
sibility as taking TF cycles and the slower as taking TS cy-
cles, where TF and TS are very close but not equal. We
call the difference between them T∆ so that the following
equation holds:

TS = TF + T∆ (1)

According to our RDTSC obfuscation scheme, execut-
ing RDTSC1 will delay the attacker until an unknown off-
set into the subsequent epoch. We call this physical offset

Figure 4: Table of variables used in analysis.

R1, R2 The return values of RDTSC1 and RDTSC2.
E The length of an epoch, in cycles.

TF , TS The number of cycles the attacker expects
to measure in the fast, slow case.

n Defined as TF /E, discarding any fractional
remainder.

T∆ Defined as TS − TF , where T∆ � E.
T0 Defined as TF mod E. Note T0 ∈ [0, E).

NF , NS The attacker’s measurement results, in epochs.

D, where D ∈ [0, E). The attacker cannot do anything to
influence D. She cannot also directly measure D, as her
return value will contain an unrelated apparent offset.

The attacker will then execute the instructions, which
takes TF cycles to complete in the “fast” case. In the “slow”
case, it takes an additional T∆ cycles.

Finally, the attacker will call RDTSC2, which will delay
the instruction until a random time in the subsequent epoch
then return R2. From the value R2, the attacker can only
determine how many integer epochs elapsed since R1. In
other words, the attacker can only know

⌊
D+Ti

E

⌋
, where Ti

is either TF or TS .
In the “fast” case the attacker’s offset into his epoch will

be (D + TF ) mod E. We denote the offset TF mod E
as T0 such that TF = nE + T0 for some integer n, so that
the attacker’s offset can be re-written as n +

⌊
D+T0

E

⌋
. We

denote the attacker’s offset as NF . The attacker’s measure-
ment of NF will always be either n or n + 1. Assuming D
is evenly distributed, the probability of each measurement
is:

Pr (NF = n) =
T0

E
(2)

Pr (NF = n + 1) = 1− T0

E
(3)

Now let us consider the “slow” case, where the timed
code section takes TF + T∆ cycles. Using the same logic
as above, the offset of the attacker immediately before
RDTSC2 will be D + T0 + T∆, and thus the attacker’s only
new information from the measurement will be NS where
NS =

⌊
D+TS

E

⌋
. The probability of all possible measure-

ments is:

Pr (NS = n) = max

(
1− T0 + T∆

E
, 0

)
(4)

Pr (NS = n + 1) = 1−
∣∣∣∣T0 + T∆

E
− 1

∣∣∣∣ (5)

Pr (NS = n + 2) = max

(
0,

T0 + T∆

E
− 1

)
(6)
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Recalling T∆ � E, we see that the probabilities for the
attacker to measure the outcome n or n+ 1 are nearly iden-
tical, whether we are in the “fast” or “slow” case. We also
see that the probability of measuring n + 2 in the slow case
is either very small or zero, depending on the value of T0.
In the fast case it is always zero. Thus, n + 2 is a unique
result that cannot be measured if the timed section is fast.

If the timed section is slow, the attacker will only have a
zero probability of measuring n+2 unless T0 is in the range
[E−T∆, E). In this range, the attacker will only succeed if
the random real offset is also in [E − T∆, E). This means

that the attacker must make Θ

((
E
T∆

)2
)

measurements to

observe an n+2 event. Therefore, the running time cost for
an attacker to learn a bit of secret information is increased
by this ratio as well. For example, if E

T∆
= 1000, then an

attack that previously took 5 minutes will instead take on
average about 10 years.

9 Experimental Results
9.1 Correctness Validation

To test our assertions about program durability when
RDTSC behavior is altered, we used a virtual machine to
emulate our proposed RDTSC modifications. We modified
KVM, an open source virtual machine, to trap and emulate
every RDTSC instruction. In the trap handler, we imple-
mented our delay function and our fuzzing scheme. We
used an epoch length of 213 = 8192 cycles. Using hard-
ware virtualization we were able to run more cycles than
we otherwise would using a full simulator, and we were bet-
ter able to test responsiveness. However, we observed that
the physical delay we introduced into KVM caused some
RDTSC instructions to be emulated out of order. While the
overall delay remains the same, the exact placement of the
delay within the program execution may be vary. This may
temper the efficacy of the protection, but should still allow
us to correctly evaluate the performance effects.

We were able to install and boot Ubuntu in a 4-core vir-
tual machine, open Firefox, browse the web, and use Flash
without any noticeable slowdown or unexpected process be-
havior. We were also able to install and boot Windows XP
in a 2-core virtual machine, open Internet Explorer 8, and
browse the web. Again, all behavior, including multime-
dia applications such as Flash, had no noticeable slowdown
compared with a system without RDTSC obscured.

To test our ability to obscure VTSC, we wrote an at-
tacker program capable of using VTSC to distinguish be-
tween an L1 cache hit and a main memory access. On our
machine, these corresponded to measurements of 75 cycles
and 224 cycles, respectively (including delay from serializ-
ing instructions).

We configured the performance monitoring unit on Ne-
halem to trigger an interrupt on every W→R event, and

modified the Linux kernel to handle these interrupts. This
approach is very similar to the approach presented by
Greathouse et al. [7]. We found that the delay of the inter-
rupt alone caused the VTSC to become inoperable, giving
indistinguishable results for L1 hits and misses.

9.2 Performance Effects

We ran the PARSEC benchmark suite to determine the
performance cost of such an implementation that relies on
existing hardware. We found most benchmarks exhibited a
slowdown of less than 1.2%, while two outliers, dedup and
streamcluster, experienced slowdowns of 14% and 29%, re-
spectively. The geometric average slowdown was 4%. This
slowdown should be considered a very conservative upper
bound. As shown in Figure 6, the vast majority of shar-
ing events that we captured happened well outside of a ten-
thousand cycle threshold, meaning that our proposed VTSC
detector would not trigger on these events.

Due to the lack of available performance counter infras-
tructure, we were not able to measure the negative perfor-
mance effects from W→W . While we expect such events
to be even more rare than W→R events, we note that addi-
tional performance degradation may occur as a result.
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Figure 5: The slowdown of Parsec Applications with our
W→R interrupt in place. Most applications show little or no
performance degradation.

10 Applying Similar Modifications to Other
Performance Counters

Modern processors have built-in counters of microar-
chitectural events that could potentially be used to create
much more sophisticated side channel attacks than exist
presently. For instance, a spy program with access to a
branch-prediction-miss counter would be able to circum-
vent the inaccuracy associated with making timing mea-
surements and guessing whether a given interval represents
a hit or miss. This translates to faster and more power-
ful attacks by malicious spy programs. Traditionally these
performance counters have been available only in kernel-
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Figure 6: A cumulative distribution function showing the
communication latency in Parsec Applications, measured in
uncore cycles. Less than 4% of W→R interactions happen
faster than 10,000 cycles, meaning that the TLU bit implemen-
tation we suggest would filter a majority of false positives –
thus further improving performance.

space, but recent work [6] has suggested exposing them to
user-space for fine grain performance measurements. The
proposed modification allows a thread to only monitor its
own microarchitectural events. Nevertheless, this informa-
tion could still be used by an attacker to infer the microar-
chitectural events of another process and thus represents a
possible side channel.

We recommend that such performance counters be ob-
scured in a similar way to the timekeeping counters, for
similar reasons. Such modifications would be easier to im-
plement and enforce because little to no existing code re-
lies on the accuracy of these performance counters. Coun-
ters that can represent data-dependent information, such as
cache misses or branch misses, are particularly important
to obscure. To implement our proposed algorithm for a
new performance counter, the important task would be to
determine an appropriate epoch length. We leave it to fu-
ture work to more precisely determine an appropriate epoch
length for all performance counters as they become avail-
able to user programs.

11 Conclusion
Microarchitectural side channel attacks are a growing

threat due increased sharing promoted by the move to cloud
based systems. In these systems multiple users are often
multiplexed onto the same hardware. This hardware is usu-
ally not hardened against leaks allowing attackers to gain
secret information with little effort. Recognizing the dan-
gers of side channels, researchers have proposed counter-
measures to plug some of the leaking structures such as

the L1 data cache. While these countermeasures serve their
intended purposes they do not and cannot claim to protect
against undiscovered or unknown side channels, or even all
known side channels (e.g., branch predictor side channel).
In this paper we propose a comprehensive approach to mit-
igate all microarchitectural side channels.

A key observation we make is that all microarchitectural
side channel attacks require a high fidelity timing source.
Our solution is to prevent the attacker from accessing this
source. Specifically we obscure the on-chip performance
counters that are used for timekeeping, and also fuzz the
software methods that are used to emulate hardware time-
keeping. The degree of security provided by this method is
roughly proportional to the square of the degree of fuzzing,
and is configurable.

We take great care to ensure that our changes are “back-
wards compatible” with existing system and application
software. Our modifications were emulated on virtual ma-
chine. In terms of hardware modifications, we suggest
adding one new instruction to the ISA to configure the level
of fuzzing, and add a very small amount of storage (order
of few hundred bits for a 32KB cache). For single-threaded
virtual machines, our proposal can be implemented without
hardware modifications.

Our modifications pave the way for systems that are se-
cure against microarchitectural side channels. By providing
an environment in which microarchitectural events cannot
be detected, we allow hardware developers to design highly
efficient shared microarchitectural structures and policies
that would, under current standards, be considered to leak
unacceptable amounts of information.
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Appendix: Timewarp SVF Measurements
Since the publication of this paper (published at

ISCA’12), we have measured the side-channel vulnerability
factor for Timewarp. To review, SVF measures the leak-
age of execution patterns through a system under specific
assumptions about the attacker and victim. Our simulator
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Figure 7: SVF measurements of Timewarp systems at the 10K
victim instruction granularity. We see than a relatively small Warp-
factor of 5 (e = 5 or up to 32 cycles) somewhat obscures the side
channel. At e = 13, however, the attacker is not even able to
complete a scan.

measures the leakage of patterns in address load streams
through a variety of microarchitectures to a prime-and-
probe style software attacker. To implement Timewarp in
the simulator, we simply add pipeline stalls and fuzzing to
simulated RDTSC instructions – the first implementation
approach outlined in Sec. 7. For this section, we run the
same set of simulations as detailed in the original SVF pa-
per [5], though we only use the “in order” attackers on SMT-
enabled systems and add Timewarp.

The data from these new simulations can be found in
Figures 7 and 8. We enable Timewarp for two warp fac-
tors, e = 5 and e = 13, creating epochs up to 32 and 8,192
cycles (respectively) in length. For comparison purposes,
we also look at configurations with caches statically parti-
tioned. As in the SVF paper [5], we present results in the
form of a cumulative histogram, allowing us to quickly look
at many configurations3. In Figure 7 we examine SMT sys-
tems at a fine granularity of 10,000 victim instructions. We
see that a relatively low Timewarp factor of 5 obscures the
side channel significantly and that there is no line for a fac-
tor of 13. This is because the attacker is sufficiently slowed
down and unable to complete any cache scans in less than
10,000 victim instructions.

To examine the affect of Timewarp with higher warp fac-
tors, we also show data for a granularity of 100,000 victim
instructions in Figure 8. Again, here we see that a factor
of only 5 obscures the side channel for a large number of
configurations. However, at a factor of 13 the side channel
is very nearly entirely closed. Although some leakage still

3We used a newer version of the simulator for this study, changing sev-
eral minor microarchitectural features and the way in which the attacker is
simulated. Thus these results are not directly comparable to charts from
the original paper.

Figure 8: SVF measurements of Timewarp systems at the 100K
victim instruction granularity. Again we see than e = 5 obscures
the side channel. At this granularity the attacker is able to com-
plete cache scans, so we see data for e = 13. Although some
leakage still occurs, the side channel is heavily obscured.

occurs, these data indicate that Timewarp is very effective
for closing microarchitectural side channels.
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